¹²C(¹²C, ¹²C),(¹²C,X) **2009Da22,2016Ka37**

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Shen	NP A968, 71 (2017)	1-Jan-2017

2009Da22: 12 C(12 C, 12 C') E=120,139.5,159 MeV, analyzed elastic and inelastic $\sigma(\theta)$ using diffraction model; deduced nuclear rms radii

2016Ka37: XUNDL dataset compiled by TUNL, 2017.

The authors carried out a systematic study of the charge changing cross sections of \approx 900 MeV/A carbon isotopes on a carbon target and analyzed the data to obtain the proton and matter radii of $^{12-19}$ C.

A beam of 937 MeV/A 12 C ions was produced by fragmenting either a 1 GeV/A 20 Ne beam or 1 GeV/A 40 Ar beam on a thick beryllium target at the GSI/FRS facility. After magnetic separation, the 12 C beam particles were identified event-by-event using a multi-sampling ionization chamber and the time-of-flight between two scintillators. The beam then passed through a thick carbon target before being reanalyzed in a second multi-sampling ionization chamber that measured the Z of ions after the target. In the analysis, the ratio of the charge changing events to the non-charge changing events was determined and used to obtain σ_{α} , the charge changing cross section. For 12 C, σ_{α} =733 mb 7 was determined.

The data were then compared with a finite-range Glauber model to obtain root-mean-square radii for the proton distribution and for the matter distribution. The results from the systematic study across ^{12–19}C is then compared with various models and comments are given on the development of neutron skins and neutron halos.

¹²C Levels

E(level)	$J^{\pi \dagger}$	Comments
0	0+	R _{r.m.s.} = 2.32 fm 2, R _{r.m.s.} = 2.35 fm 2 (2016Ka37).
4.44×10^3		R _{r.m.s.} =2.34 fm (2009Da22). R _{r.m.s.} =2.36 fm 4 (2009Da22).
7.65×10^3		R _{r.m.s.} =2.89 fm 4 (2009Da22).
9.64×10^3 14.1×10^3		$R_{r.m.s.}$ =2.88 fm 11 (2009Da22).
18.5×10^3		
19.6×10^3		

[†] From Adopted Levels.